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We considered the most general motion of a system of particles.  We specifically 
consider rigid bodies, defined as multi-particle objects in which the distance between any two 
particles never changes as the object moves.  We then considered the kinetic energy of 
rotation of a rigid body and found that it decomposes cleanly into the kinetic energy of the 
center of mass (relative to some origin), and the kinetic energy of motion relative to the CM.  
For a rigid body, the only motion it can have relative to the CM is rotation.  

Next we considered an arbitrary rigid object that is forced to rotate about a single fixed 
axis, which we take to the z-axis.  The angular velocity of the object can be written as 
𝜔��⃗ = 𝜔𝑧̂.  Naively we might expect that the angular momentum of the object to be 𝐿�⃗ = 𝐼𝑧𝜔��⃗ , 
where 𝐼𝑧 = ∑ 𝑚𝛼𝜌𝛼2𝑁

𝛼  is the moment of inertia for rotation about that axis.  This turns out to 
be true only in special cases of very symmetric objects, or when the axis of rotation is chosen 
along one of the ‘principal axes’, defined below.  We did the full general calculation of 𝐿�⃗  and 
found that 𝐿�⃗ = 𝐿𝑥𝚤̂ + 𝐿𝑦𝚥̂ + 𝐿𝑧𝑘�, where 𝐿𝑥 = −∑ 𝑚𝛼𝑥𝛼𝑧𝛼𝑁

𝛼 𝜔, 𝐿𝑦 = −∑ 𝑚𝛼𝑦𝛼𝑧𝛼𝑁
𝛼 𝜔, and 

𝐿𝑧 = −∑ 𝑚𝛼(𝑥𝛼2 + 𝑦𝛼2)𝑁
𝛼 𝜔.  Thus in general the angular momentum vector 𝐿�⃗  is not parallel 

to the axis of rotation 𝜔�. 

Next we considered an arbitrary rigid body rotating about an arbitrary axis.  In general 
the axis of rotation of an object will change as it moves.  We calculated 𝐿�⃗  by summing over 
all particles in the system and found that the vector quantity could be broken down into 
components as 𝐿𝑥 = 𝐼𝑥𝑥𝜔𝑥 + 𝐼𝑥𝑦𝜔𝑦 + 𝐼𝑥𝑧𝜔𝑧, with 𝐼𝑥𝑥 = ∑ 𝑚𝛼(𝑦𝛼2 + 𝑧𝛼2)𝑁

𝛼 , 𝐼𝑥𝑦 =
−∑ 𝑚𝛼𝑥𝛼𝑦𝛼𝑁

𝛼 , 𝐼𝑥𝑧 = −∑ 𝑚𝛼𝑥𝛼𝑧𝛼𝑁
𝛼 , and similar expressions for 𝐿𝑦 and 𝐿𝑧.  All of these 

results can be summarized in a simple matrix equation as 𝐿�⃗ = 𝐼𝜔̿��⃗ , where 𝐿�⃗ = �
𝐿𝑥
𝐿𝑦
𝐿𝑧
� is the 

angular momentum represented as a column vector, 𝐼 ̿ = �
𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

� is called the 

inertia tensor, and 𝜔��⃗ = �
𝜔𝑥
𝜔𝑦
𝜔𝑧
� is the angular velocity vector.  Note that the inertia tensor is 

symmetric about the diagonal: 𝐼𝑖𝑗 = 𝐼𝑗𝑖.  𝐿�⃗ = 𝐼𝜔̿��⃗  is a general expression relating the angular 
momentum vector to the axis of rotation. 
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We did the example of a cube of side 𝑎 and mas 𝑀 rotated about one edge.  The inertia 
tensor can be calculated by converting the sums to integrals, for example: 𝐼𝑥𝑥 =

∑ 𝑚𝛼(𝑦𝛼2 + 𝑧𝛼2)𝑁
𝛼

𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯� ∫ 𝑑𝑥𝑎

0 ∫ 𝑑𝑦𝑎
0 ∫ 𝑑𝑧𝑎

0  𝜌 (𝑦2 + 𝑧2), where 𝜌 = 𝑀/𝑎3 is the density of 
the uniform cube.  Here we assume that the corner of the cube (at the origin of the Cartesian 
coordinate system) will remain fixed.  The resulting inertia tensor for this case is 𝐼 ̿ =

𝑀𝑎2

12
�

8 −3 −3
−3 8 −3
−3 −3 8

� .  This inertia tensor can be used for any rotation axis that passes 

through the corner of the cube at the origin.  In particular, for rotation about the x-axis, 

𝜔��⃗ = (𝜔, 0,0) and we find the angular momentum to be 𝐿�⃗ = 𝑀𝑎2𝜔 �2
3

,−1
4

,−1
4
�.  It is clear 

in this case that 𝐿�⃗  is not parallel to 𝜔��⃗ .  This is due in part to the fact that the object is not 
symmetric with respect to the axis of rotation. 

A surprising result is that any object, no matter how irregular, always has 3 principal 
axes, for which the angular momentum vector and angular velocity are parallel.  In other 
words, for any object we can find three perpendicular axes around which the object will 
rotate without “wobbling”.  The formal statement is this: For any rigid body and any point O 
there are three mutually perpendicular principal axes through O.  This amounts to finding 
three perpendicular axes through O for the calculation of the inertia tensor yields a diagonal 
matrix.  This result arises from the linear algebraic properties of any real symmetric matrix 
(namely 𝐼)̿ – it can always be diagonalized. 

How to find the principal axes of an arbitrary object?  We are looking for three directions 
for the angular velocity vector 𝜔��⃗  to create an angular momentum vector that satisfies 𝐿�⃗ =
𝜆𝜔��⃗ , where 𝜆 is some real number.  This is the condition for two vectors to be parallel.  Since 
in addition we know that in general 𝐿�⃗ = 𝐼𝜔̿��⃗ , we can combine these two equations to find: 
𝐼𝜔̿��⃗ = 𝜆𝜔��⃗ , which is a classic eigenvalue problem.  This equation states that a matrix 
multiplying a vector produces the same vector multiplied by a real number, the eigenvalue.  
The eigenvectors of this equation constitute the angular velocity directions that diagonalize 
the intertia tensor, and constitute the principal axes.  These three vectors span the 3-
dimensional coordinate space and are therefore mutually perpendicular.   

We write 𝜆𝜔��⃗ = 𝜆1�𝜔��⃗ , where 1� is the 3x3 unit matrix, and then construct the eigenvalue 
matrix equation: �𝐼 ̿ − 𝜆1��𝜔��⃗ = 0.  The only way to get non-trivial solutions from this 
equation is to make 𝑑𝑒𝑡�𝐼 ̿ − 𝜆1�� = 0.  This yields three eigenvlaues and three eigen-
functions.  We examined the case of the cube rotated on an axis that passes through one 
corner of the cube, for which we calculate the inertia tensor above.  This inertia tensor yields 
a characteristic equation 𝑑𝑒𝑡�𝐼 ̿ − 𝜆1�� = (2𝜇 − 𝜆)(11𝜇 − 𝜆)2 = 0, where 𝜇 = 𝑀𝑎2/12, 
giving 𝜆 = 2𝜇 as an eigenvalue and 𝜆 = 11𝜇 as a double eigenvalue.  The eigenvector 
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associated with 𝜆1 = 2𝜇 is 𝜔1� = 1
√3

(1,1,1), which represents the body diagonal of the cube.  

The cube has a moment of inertia of 2𝜇 = 𝑀𝑎2/6 for rotation about this axis.  The other two 
eigenvalues yield only the condition 𝜔𝑥 + 𝜔𝑦 + 𝜔𝑧 = 0 on the eigenvectors, which simply 
mean that they have to be perpendicular to 𝜔1� .  We are free to choose any two such 
directions that are mutually perpendicular.  A set of possible choices are 𝜔2� =
1
√6

(2,−1,−1), and 𝜔3� = 1
√2

(0,1,−1), for which the cube has moment of inertia 11𝜇 =

11𝑀𝑎2/12.  To summarize, the principal axes𝜔1� , 𝜔2� , 𝜔3�  diagonalize the inertia tensor as 

𝐼 ̿ = 𝑀𝑎2

12
�

2 0 0
0 11 0
0 0 11

�. 


